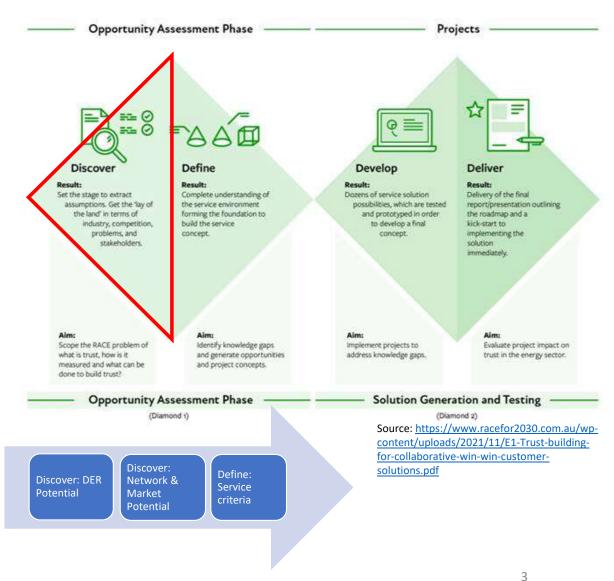
FlexForum: session IV

Pre-reading for 17 March 2022 session

Shared 11 March 2022

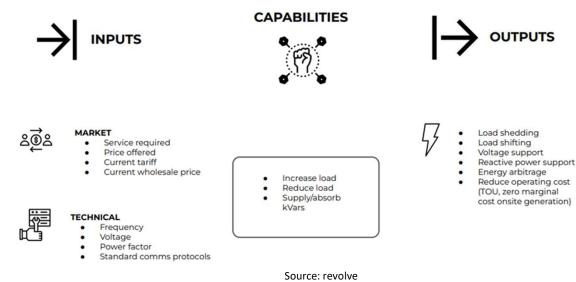
Session overview – topics and decisions


Three main topics

- 1. Network & Market potential. Discussion roadmap topic 2
 - a) No decision
- 2. Workplan, engagement and communications planning
 - a) Approve proposed workplan
- 3. Administration governance, budget and funding
 - a) Update

Discussion roadmap: starting with discover and define stages

Workshop focus is discovering Network & Market potential (ie, the buyer side)


- mirror of discussion of DER potential (ie, the seller side)
- From the <u>viewpoint of a Network Operator</u> with a range of specific operational needs, what are the characteristics of the services required to satisfy those needs?
- From the <u>viewpoint of a Market Participant</u> with a range of specific market needs, what are the characteristics of the services required to satisfy those needs?

Focus of Network & Market potential discussion

Network operator and market participant perspectives of the performance criteria and associated conditions requiring a network/market response:

- 1. distribution network
- 2. transmission network and System Operator
- 3. Market Participant

The focus is...

What outputs do Network Operators & Market Participants need to respond to network/market conditions

- What network and market conditions require a response? For example, high spot prices, frequency excursions, thermal constraints...
- What are the characteristics (or performance criteria) of the response given the conditions?
- What information is used to determine the response is needed and what signal is needed to initiate the response?

Network operator and market participant responses to network & market conditions can be delivered as a service providing a potential DER revenue stream

Sapere listed these network and market value streams in two separate reports

- Energy arbitrage
- Resource adequacy (generation)
- Resource adequacy (network)
- Ancillary services (system-level and distribution)
 - Instantaneous reserve
 - Frequency keeping
 - Voltage
 - Harmonics
 - Inertia
 - Black start

Sapere has produced 2 separate reports identifying value streams / services which could be supplied using DER.

Sapere, Distributed energy resources – understanding the potential, July 2020, https://www.transpower.co.nz/sites/default/files/publications/resources/Distributed%20Energy%20Resources%20-%20Understanding%20the%20potential%20-%20main%20report%20-%20final_0.pdf

Sapere, Cost-benefit analysis of distributed energy resources in New Zealand, A report for the Electricity Authority, September 2021, at https://www.ea.govt.nz/assets/dms-assets/28/Cost-benefit-analysis-of-distributed-energy-resources-in-New-Zealand-Sapere-Research-Group-final-13September.pdf

Table 2: DER capability matrix for 2035

	Frequency keeping	Instantaneous reserve	Resource adequacy – offset thermal peaking	Resource adequacy – offset lines and transmission	Voltage management	Harmonic filtering	Inertia	Resource adequacy – hydro firming
EV storage	~	~	~	×.	x	Cost	~	x
EV storage + PV	~	~	~	~	~	Cost	~	~
Demand response - residential	x	~	~	~	x	Cost	~	x
Battery - residential	~	~	~	~	×.	Cost	~	x
Battery - commercial	~	~	~	~	~	Cost	~	x

Network/market conditions have different response characteristics

Examples...

- Contingency reserves (generation adequacy) requires capability to reduce load in <15 minutes for up to 60 minutes
 - procured by the System Operator for the power system
- Voltage support (ancillary service) requires capability to raise/lower load in <60 seconds for seconds to minutes
 - procured by the System Operator for the power system and distributors for their networks
- Network and Generation capacity (adequacy) requires capability to reduce load in <60 minutes for 2-4 hours
 - procured by the grid owner and distributors

Criteria for ancillary services currently procured by the System Operator are defined under the Code

De mand Side Management Strategies	Grid Services	Description of Building Change	Key Characteristics			
Efficiency	Generation: Energy Generation: Capacity	Persistent reduction in load. Interval data may be needed for M&V purposes. This is not a dispatchable	Duration Load Change Response Time	Continuous Long term decrease N/A		
	T&D: Non-Wires Solutions	service.	Event Frequency	Lifet ime of equipment		
	Contingency Reserves	Load reduction for a short time to make up for a shortfall in generation.	Duration Load Change Response Time Event Frequency	Up to 1 hr Short term dœrease <15 min 20 times per year		
Shed Load Generation: Energy Generation: Capacity T&D: Non-Wires Solutions		Load reduction during peak periods in response to grid constraints or based on time-of-use (TOU) pricing structures.	Duration Load Charge Response Time Event Frequency	2 to 4 hrs Short term docrease 30 min to 2 hrs <100 hrs per yr/season		
Generation: Capacity T&D: Non-Wires Solutions		Load shifting from peak to off-peak periods in response to grid constraints or based on TOU pricing structures.	Duration Load Change Response Time Event Frequency	2 to 4 hrs Short term shift <1 hour <100 hrs per yt/season		
Shift Load	Contingency Reserves	Load shift for a short time to make up for a shortfall in generation.	Duration Load Change Response Time Event Frequency	Up to 1 hr Short term shift <15 min 20 times per year		
	Avoid Renewable Curtailment	Load shifting to increase energy consumption at times of excess renewable generation output. This is not a dispatchable service but can be reflected through TOU pricing.	Duration Load Change Response Time Event Frequency	2 to 4 hrs Short term shift N/A Daily		
	Frequency Regulation	Load modulation in real time to closely follow grid signals. Advanced telemetry is required for output signal	Duration Load Change Response Time Event Frequency	Seconds to minutes Rapid increase/decreas <1 min Continuous		
Modulate Load	Voltage Support	transmission to grid operator; must also be able to receive automatic control signal.	Duration Load Change Response Time Event Frequency	Sub-seconds to second Rapid increase/ decrease Sub-seconds to second Continuous		
	Ramping	Load modulation to offset short term variable renewable generation output changes.	Duration Load Change Response Time Event Frequency	Seconds to minutes Rapid increase/decrea Seconds to minutes Continuous		
	Ramping	Distributed generation of electricity to dispatch to the grid in response to grid	Duration Load Change Response Time Event Frequency	Seconds to minutes Rapid dispatch Seconds to minutes Daily		
Generate	Generation: Energy Generation: Capacity T&D: Non-Wires Solutions	signals. This requires a generator or battery and controls.	Duration Load Change Response Time Event Frequency	2 to 4 hrs Dispatch/negative load <1 hour <100 hrs per yt/seasor		
		Distributed generation of electricity for	Duration	Entire generation perior		
	Generation: Energy Generation: Capacity	use onsite and, when available,	Load Change	Reduction/negativeloa		
	T&D: Non-Wires Solutions	feeding excess electricity to the grid. This is not a dispatchable service.	Response Time	N/A		
	ido. non-mico obiduono	though metered data is needed.	Event Frequency	Daily		

Source: Locational value of distributed energy resources, February 2021, at <u>https://eta-</u>6 <u>publications.lbl.gov/sites/default/files/lbnl locational value der 2021 02 08.pdf</u>, see Appendix B

Examples of the conditions and criteria for procuring network adequacy services

Aurora ROI for non-network electricity capacity support options in the upper Clutha area, August 2019

Capacity support for Upper Clutha Region. Supplied by 2 x 66kV lines from Cromwell GXP (serving Wanaka & surrounding area)

Seeking 1 MW up to 30 MW with minimum bid of 100 kW for several hours

- Manage loading in contingency situations (e.g. 1 circuit experiences an outage coincident with peak load)
- Delay or avoid upgrade to transformers

DG or DR (single site or aggregated)

https://www.auroraenergy.co.nz/assets/Files/Disclosures/Informa tion-Disclosures/ROI-Non-Network-Electricity-Capacity-Support-Options-Upper-Clutha-Area-FINAL-27-8-2019.pdf (33 pages)

Powerco ROI for network support options for the Coromandel region, March 2021

Capacity support for the north of Tairua on the Coromandel Peninsula. Supplied by 66kV circuits from the Kopu GXP to Tairua, Whitianga and Coromandel zone substations. Seeking backup supply and peak reduction across three locations

- Manage loading in contingency situations (e.g. 1 circuit experiences an outage coincident with peak load)
- Delay or avoid upgrade to sub-transmission circuits or substation equipment

DG or DR (single site or aggregated). 10-20 year contract term

https://www.powerco.co.nz/-/media/project/powerco/powercodocuments/community-partnerships/network-support-options.pdf (12 pages)

Vector ROI for non-wires alternative in wider Warkworth region, January 2022

Capacity support for Warkworth region. Supplied by 2 long 33kV circuits from the Wellsford GXP.

Seeking 3-5 MW with a 1MW minimum block

- Manage loading in contingency situations (e.g. 1 circuit experiences an outage coincident with peak load)
- Delay or avoid upgrade to subtransmission circuits or substation equipment

DG or DR (single site or aggregated). From winter 2023 for up to 10 years

https://blob-static.vector.co.nz/blob/vector/media/newsarticles/roi nonwiresalternative warkworth 17january2022.pdf (17 pages) The planning horizon and immediacy and duration of the operational response drive visibility, data, and communications requirements

In general there are reactive (shortterm) and pro-active (long-term) planning horizons which drive network and market operation and asset management

- reactive responses to fast-changing conditions require operational decisions using more real-time visibility, data availability, and automated systems
- proactive responses to foreseeable conditions require forecasting and planning decisions using historical data

The planning and operational time horizons determine the options for procurement and dispatch of services, including those delivered using DER

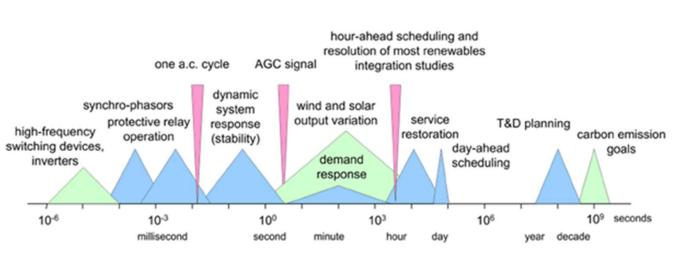


Figure 21: Grid Operational Time Periods

Source: CIEE/ A. von Meier

Source: Modern distribution grid, Decision guide volume III, June 2017, at https://gridarchitecture.pnnl.gov/media/Modern-Distribution-Grid-Volume-III.pdf

Objectives

Proposed FlexForum workplan

- 1. Identify the minimum specifications of the services that DER can provide, to who, when, where, how and for how much
- 2. Identify the practical, scalable, and no regrets steps to use the services that DER can provide
- 3. Support ongoing learning and collaboration across the electricity sector on real world deployment of solutions to realise the benefits of DER, including identifying and resolving barriers.

Focus Area	Objective	Questions to answer	Target output	Effort
A. Flexibility needs What and why (drivers)	1	 DER potential & Network and Market potential What are the energy system needs and value drivers for flexibility? What response is required to meet the need? What assets can provide that response? 	See examples slide	Low
B. Product definitions What and how (technical requirements)	1	 High level requirements for need cases and value drivers What are the existing/future products used to meet the energy system needs? What are the high-level technical parameters and requirements of these products? 	See examples slide	Low
C. Market access and participation Who and how (commercial)	1	 Contracting principles Who facilitates the markets/access to value streams? Who can participate in the markets? How are these markets managed (contractual/technical/platform/settlement) and how might this evolve? How can each party maximise access and participation in flexibility? 	ТВС	High
D. Market opportunities Where and for how much	1	 Payment and compensation mechanisms What is the indicative value and variation between services by location? How are the opportunities for flexibility evaluated and signaled in a transparent way across the electricity system? What factors into optimisation and value stacking against these value streams? Where are there likely to be conflicts/synergies and how are they managed? 	ТВС	High
E. Practical, scalable and least-regret steps	2, 3	 Implementation What are the existing opportunities for flexibility we can promote? What are the enablers (e.g. visibility) for using emerging/future flexibility products? What are the key learnings and actions that individual parties or the sector can take forward? Can any principles for market development can be agreed now? 	Report summarizing learning and recommendations	Medium
F. Support ongoing learning and collaboration	g 3	 Delivery and next steps Where are there remaining knowledge gaps/opportunities to explore potential solutions? Which of these could the FlexForum members address through further research/ demonstration projects and how are these funded? What is the best way to coordinate and drive progress across NZ going forward? 	Project briefs for members to take forward Agreed next steps for the group and/or members	e Medium

Timeline

Meeting	0 (17-12)	1 (03-02)	2 (17-02)	3 (03-03)	4 (17-03)	5 (31-03)	6 (14-04)		7 (28-04)		8 (12-05)	9 (26-05)	10 (09-06)	
Торіс	Dec	F	eb		March		Aj	pril		May		Ju	ne	
Governance	Draft TOR	Agree TOR and budget					Mid point review					Establish next steps	Wrap up	
Engagement			Stakeholder mapping				Workshop prep	Engagement workshop				Event prep		Dissemination event
A. Flexibility needs What and why (drivers)				DER potential (a provider view)	Network & Market potential (a purchaser view)	Value streams and capability		Seek feedback	Address feedback					
B. Product definitions What and how (technical requirements)					Need cases	High level requirements		Seek feedback	Address feedback					
C. Market access and participation <i>Who and how</i> <i>(commercial)</i>							Contracting principles			Seek feedback	Address feedback			
D. Market opportunities Where and for how much									Payment & compensation	Seek feedback	Address feedback			
E. Practical, scalable and least-regret steps	-	question		tious Is it	Fraglistic	for the gr	oun to ro	solvo tho	question	and	Implementation			
F. Support ongoing learning and collaboration	g	et input (i anything	e, engage	ement) in	the time		oup to res		questions	allu		Establish next steps	Bring it together	Seek feedback
	• Is	the enga	gement a	pproacha	aligned w	ss the grou with the pu	irpose and		itputs?					10

Is the engagement approach aligned with the purple
Is the suggested engagement logistically possible?

Example outputs

A. Flexibility needs

Flexibility Products		Reinforcement Deferral	Planned Maintenance	Unplanned Interruptions			
X4 —		+T 7	\$	Pre-Fault Response	Post-Fault Response		
Value Drivers		The present value of deferring capital expenditure	Managing unplanned interruption risk during planned maintenance	Customer Interruption (CI) and Minutes Lost (CML) incentives	Avoided cost of temporary generation and potentially CMLs		
2023 Flexibility Pote	ntial (MW)	206	Available to eligible DER capacity				
High-Level Location Specific Requirements		Yes					
	Response Time	30 mins maximum		<10 mins preferred, 30 mins maximum			
	Response Duration	Full availability window Pro-rated payment if av part of window		3 hours. Pro-rated payment if available for part of window			
DER Type		Generation, Storage an	d Load Reduction		Generation and Storage		

Service Parameter	DNO Flexibility Products						
Service Parameter	Sustain	Secure (Scheduled)	Secure (Dispatched)	Dynamic	Restore		
When required?	Scheduled forecast overload	Pre- fault / peak shaving		Network abnormality / planned outage	Network Abnormality		
Risk to Network	Low Medium			High	High		
Utilisation Certainty	High	High High		Low	Low		
Frequency of Use*	High	Medium		Low	Low		
Minimum Flexible Capacity			0-50kW				
Minimum Utilisation Duration Capability	30 mins						
Minimum Utilisation	15 - 30 mins						
Maximum Ramping Period	N/A	N/A	<15 mins	<15 mins	<15 mins		
Availability Agreement Period	N/A	Contract stage	Week ahead	Contract stage if appliccable	Contract stage if appliccable		
Utilisation Instruction Notification Period	Scheduled in advance**	Contract stage	Real Time	Real Time	Real Time		

* Frequency is location specific defined at the point of procurement

** Utilisation requirements may differ to schedule and be instructed in real time

https://smartgrid.ukpowernetworks.co.uk/wp-content/uploads/2019/11/futuresmart-flexibility-roadmap.pdf

https://www.energynetworks.org/industry-hub/resource-library/open-networks-2020-ws1a-p3-finalimplementation-plan.pdf

Focus Area	Relevant material
C. Market access and participation Who and how (commercial)	https://www.ofgem.gov.uk/sites/default/files/docs/2019/09/ofgem_fi_flexibility_platforms_in_electricity_markets.pdf https://smartgrid.ukpowernetworks.co.uk/wp-content/uploads/2019/11/UKPN_Flex_Consultation_Responses.pdf
D. Market opportunities Where and for how much	https://www.energynetworks.org/assets/images/Resource%20library/ON20-WS1A-P1%20CEM%20Tool%20v1.0.xlsm.zip

B. Product definition Flexibility needs example

Engagement and communications planning update

Update

- FlexForum webpage demonstration (on-the-day)
- A stakeholder engagement plan is being developed details depend on the workplan

Example engagement activities:

- **Targeted Workshop**: 2-3 hour virtual workshop, providing an overview of progress to date, potential impact/benefit to workshop participants, and seek input and feedback into the key outcomes presented.
- Seek Feedback: One-to-one or one-to-many engagements on specific areas of focus/interest/ area of expertise, with the clear objective of providing targeted and curated information, gaining buy in and seeking feedback on specific areas of expertise/interest.
- Key Outcome Updates: Providing curated and targeted updates to key stakeholders on progress to date, next steps and opportunities for engagement and feedback.

Administration – governance, budget & funding

Update. No specific content